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Abstract 

This study explores the use of Modern-Era Retrospective analysis for Research and 

Applications version 2 (MERRA-2) global meteorological and aerosol reanalysis for improving 

the simulation of satellite sensor infrared brightness temperatures (BTs), and the retrieval of sea 

surface temperature (SST) in the NOAA Advanced Clear Sky Processor for Ocean (ACSPO) 

system, with a particular focus on ACSPO long-term reprocessing efforts. Using MERRA-2 

upper-air pressure, temperature, and humidity profiles, rather than the currently used NCEP 

Global Forecast System (GFS) real-time data, as input into the Community Radiative Transfer 

Model (CRTM), reduces the global clear-sky observation-minus-model (O–M) BT biases in the 

infrared bands centered at 3.7, 8.6, 11, and 12 µm of the Visible Infrared Imaging Radiometer 

Suite onboard Suomi-NPP. The improvements are largely due to more accurate water vapor 

(total amount and/or vertical distribution) at low latitudes in MERRA-2, which brings the 

modeled BTs closer to observations. Additional stand-alone simulations, performed using 

RTTOV model and MERRA-2 aerosol profiles, further reduce the ACSPO global O–M BT 

biases and the dependence of O–M BT biases on the dust aerosol optical depth. The potential 

skill of MERRA-2 aerosol reanalysis for reducing dust-caused regional biases in the ACSPO 

global regression SST product is also demonstrated. Preliminary results suggest that MERRA-2 

is a viable alternative to NCEP GFS for ACSPO reprocessing efforts. 
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1. Introduction 

Sea surface temperature (SST) is routinely retrieved from brightness temperatures (BTs) 

measured by a number of passive infrared (IR) spaceborne sensors in the atmospheric window 

regions. SST retrieval typically uses multi-channel or non-linear SST (MC/NLSST) regression 

algorithms to account for the atmospheric attenuation by water vapor. Customarily, split-window 

bands centered at 11 and 12 µm are used, often in conjunction with the more transparent 

shortwave band centered at 3.7 µm (e.g., Prabhakara et al., 1974; McMillin, 1975; McMillin and 

Crosby, 1984). Other window bands (e.g., centered at 8.6 µm) may also be included, when 

available. 

At NOAA, the Advanced Clear-Sky Processor for Ocean (ACSPO) enterprise system is 

employed to produce SSTs from several polar-orbiting and geostationary sensors. As part of its 

processing, ACSPO calculates the expected top-of-atmosphere (TOA) clear-sky sensor BTs 

using the Community Radiative Transfer Model (CRTM), in conjunction with first-guess SST 

(currently, Canadian Meteorological Center (CMC) daily L4 analysis; Brasnett and Surcel-Colan, 

2016) and atmospheric profiles of pressure, temperature, water vapor, and ozone (currently, from 

the National Centers for Environmental Prediction Global Forecast System, NCEP GFS) (e.g., 

Liang et al., 2009). The observation-minus-model (O–M) BT biases are used to monitor the SST 

bands of different sensors for stability and cross-platform consistency, validate the CRTM and its 

inputs, improve ACSPO clear-sky mask, and explore physical SST retrieval. Currently, no 

aerosol absorption or scattering is included in the CRTM employed in ACSPO, which may be 

one of several factors contributing to the persistent cold O–M biases of several tenths of a Kelvin, 

depending on sensors and bands, as observed in the NOAA Monitoring of IR Clear-sky 

Radiances over Ocean for SST (MICROS) system (Liang and Ignatov, 2011). 
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Several sensitivity studies have been conducted in the past, towards more accurate modeling of 

sensor BTs in ACSPO. Liang et al. (2009) tuned the CRTM and optimized in-pixel CRTM 

calculations for satellite sensors with resolutions from 1-4 km, using low-resolution first-guess 

CMC SST (0.2º) and GFS profiles (1º). Saha et al. (2012) compared several SST L4 analyses as 

input into CRTM and selected the CMC product, which best captured the spatial variability in 

satellite derived SSTs and was most stable in time. Liang et al. (2017) examined the sensitivity 

of modeled BTs to the use of European Center for Medium-Range Weather Forecasts (ECMWF) 

profiles, instead of NCEP GFS, and found that ECMWF data reduced the global O–M BT biases. 

Both ECMWF and GFS are real-time data, whereas for the ACSPO reanalysis (e.g., Ignatov et 

al., 2016), long-term uniform data sets are needed, which preferably include aerosol first-guess 

fields to explore including aerosol in BT simulations, and aerosol corrections to SST. 

Following the El Chichon (1982) and Mt. Pinatubo (1991) eruptions, additions to the 

MC/NLSST formulations have been explored to correct for the effect of sulfate aerosols, whose 

absorption spectra differ from those of water vapor (Griggs, 1985; Reynolds, 1993; Merchant et 

al., 1999). In the presence of IR-absorbing aerosols, the deviations of satellite BTs from SST are 

approximately linearly related to two factors: the slant path IR aerosol optical depth (AOD), and 

the temperature contrast between the aerosol layer and sea surface (Griggs, 1985). While the 

slant path AOD at visible wavelengths may predict, to some degree, the effect of volcanic 

aerosols on the BTs and derived SST, due to the relatively well known and nearly fixed vertical 

distribution in the stratosphere, it may be less effective for predicting the BT and SST biases due 

to tropospheric aerosols, because of the highly variable optical properties and vertical 

distributions (May et al., 1992; Nalli and Stowe, 2002). In particular, wind-blown dust from the 

deserts of Africa, Arabian Peninsula, and Asia is often responsible for persistent seasonal SST 
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biases over the North Atlantic, Arabian Sea, and West Pacific (Diaz et al., 2001). Through 

radiative transfer simulations, Merchant et al. (2006) derived a Saharan dust index from the BT 

differences in the four IR bands used for SST retrieval. The SDI has shown some skill to account 

for the effects of dust amount and vertical profile on the SST bias, thus improving the SST 

retrieval over the North Atlantic. Note that the SDI can only be derived from nighttime data, due 

to solar contamination in the 3.7 µm band (Good et al., 2012; Le Borgne et al., 2013), and its 

application with daytime data requires additional efforts. 

Previous simulations of dust effects on BTs and SSTs were limited by the use of idealized 

configurations of dust concentrations and vertical placement. Thanks to recent advances in 

aerosol observations and modeling, several weather prediction centers have developed global 

aerosol reanalyses, in conjunction with conventional meteorological fields, such as the Modern-

Era Retrospective analysis for Research and Applications version 2 (MERRA-2) (Buchard et al., 

2017; Gelaro et al., 2017). These newly available data have the potential for improving satellite 

BT simulations for a globally representative range of meteorological and aerosol conditions. 

This study explores the utility of MERRA-2 global meteorological reanalysis, instead of NCEP 

GFS, for improving the simulation of sensor BTs under aerosol-free conditions, for the use in 

ACSPO reprocessing efforts. The effect of MERRA-2 meteorological profiles on ACSPO global 

O–M BT biases is presented based on global nighttime data from the Visible and Infrared 

Imaging Radiometer Suite (VIIRS) onboard the Suomi-NPP satellite. In addition, we 

preliminarily evaluate the skill of MERRA-2 aerosol reanalysis to bring modeled BTs closer to 

observations. Dust aerosol attenuations of VIIRS BTs based on stand-alone RTTOV model 

simulations are used to correct the sensor BTs, and subsequently, the ACSPO global regression 

SST. This strategy differs from past studies in that the aerosol correction based on radiative 
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transfer simulations is applied directly to sensor BTs, thereby minimizing possible changes in the 

SST equations and potentially enabling aerosol correction for both daytime and nighttime SSTs. 

2. Approach 

MERRA-2 consists of a collection of land, atmosphere, and aerosol products for the modern 

satellite era generated by the NASA Goddard Earth Observing System version 5 data 

assimilation system (GEOS-5), which assimilates meteorological observations and bias-corrected 

AOD observations from satellites and ground stations (Gelaro et al., 2017). The MERRA-2 

meteorological fields are available at 42 pressure levels from 1000 to 0.1 hPa every 3 hours at 

0.5°×0.625° resolution. The MERRA-2 aerosol fields are provided at 72 model layers, and 

converted to the same pressure levels as the meteorological fields. Compared to MERRA-2, the 

NCEP GFS meteorological data are available at 26 pressure levels from 1000 to 10 hPa every 6 

hours at 1°×1° resolution. The pressure, temperature and humidity profiles from MERRA-2 and 

GFS are used as input into two separate simulations using ACSPO (v2.50) to calculate the VIIRS 

BTs in the 3.7, 8.6, 11, and 12 µm bands. Both simulations use the CMC L4 as the first-guess 

SST. Results shown in this study are based on simulations using two weeks’ global nighttime 

data between 18–31 January 2018. 

Currently, the CRTM in ACSPO is not capable of incorporating external information of aerosol 

optical properties and vertical profiles in BT simulations. Hence, the RTTOV model (v12.1) is 

used to evaluate the potential of MERRA-2 aerosol reanalysis for improving sensor BT 

simulations and SST retrieval under dusty conditions. RTTOV has been used in previous studies 

to simulate the BT responses to aerosol loadings for a number of sensors (Merchant et al., 2006; 

Good et al., 2012; Le Borgne et al., 2013). Here two RTTOV experiments are conducted for the 

VIIRS clear-sky pixels under aerosol-free and dust-affected conditions, respectively. During the 
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study period of 18–31 January 2018, large amounts of dust aerosol are blown off the deserts of 

West Africa to the Atlantic Ocean, and off Arabian Peninsula to the Red Sea, Persian Gulf, and 

Arabian Sea. The difference between the two RTTOV simulations is calculated as the dust-

induced BT changes, which are used for aerosol correction to sensor BTs. To simulate the dust 

effect on sensor BTs, RTTOV requires profiles of dust absorption and scattering coefficients and 

backscatter parameters. These profiles are generated in three steps: 1) the MERRA-2 dust mixing 

ratios at five size bins are multiplied by the extinction coefficients at 0.55 µm (which are 

provided by the GEOS-5 model) and added to generate the profile of visible (0.55 µm) AOD; 2) 

The visible AOD is converted to IR AOD at 10 µm, as AOD10µm = 0.4×AOD0.55µm. The ratio of 

IR to visible AOD ranged from 0.2 to 0.6, and was found to decrease with the distance away 

from the source area, as the coarse mode particles are preferentially removed during atmospheric 

transport (Pierangelo et al., 2004). A ratio of 0.4 is used in this study for the mid-range transport 

to Cape Verde islands, where dust causes strong attenuation of sensor BTs. 3) The extinction 

AOD at 10 µm is further separated to the absorption and scattering AODs at VIIRS IR bands, 

based on Mie-computed dust absorption and scattering properties (Xi and Sokolik, 2012). The 

assumption of dust particles as spheres in Mie calculations has negligible effects in the IR 

wavelengths (Yang et al., 2007). The Mie calculations use refractive index and size distribution 

from the Optical Properties of Aerosols and Clouds (OPAC) database (Hess et al., 1998). The 

aerosol backscatter parameter is then calculated from the Mie scattering phase function. 

3. Results 

While implementing CRTM in ACSPO, Liang et al. (2009) made various improvements to 

minimize the global O–M BT biases, which are measured by mean/median biases and 

conventional/robust standard deviations (SD/RSD). Conventional statistics are useful for 
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evaluating the overall performance of ACSPO products, but may be sensitive to outliers in 

satellite data (due to e.g., residual cloud or sensor malfunction). In contrast, the robust statistics 

are less affected by outliers, and may be better suited to evaluate the performance of the forward 

model or retrieval method (Merchant et al., 1999; Liang and Ignatov, 2011). If the O–M BT 

biases have near Gaussian distributions (see Fig. 1), the conventional and robust statistics are 

close to each other. In this study, only the robust statistics will be discussed. The results will be 

shown based on the entire simulation period, unless noted otherwise. 

3.1. Effects of MERRA-2 vs. GFS on O–M BT biases in aerosol-free conditions 

Table 1 shows that using GFS profiles in ACSPO CRTM yields global O–M median biases of -

0.145, -0.714, -0.575 and -0.728 K in the VIIRS bands centered at 3.7, 8.6, 11 and 12 µm, 

respectively. Possible causes for the cold O–M biases in all bands are either increased “M” (due 

to e.g., insufficient amount of water vapor and/or its inaccurate placement in the atmosphere, 

missing aerosols in GFS, or the use of foundation CMC L4, rather than the cooler skin SST, as 

input to the forward model), or decreased “O” (due to e.g., residual cloud in VIIRS observations) 

(Liang and Ignatov, 2011). The fact that the magnitude of the O–M bias is closer to zero in the 

most transparent 3.7 µm band and much larger in the less transparent longwave bands, suggests a 

possible “dry bias” in the GFS atmospheric profiles (or its not fully accurate vertical distribution, 

e.g., placing it lower in the atmosphere, closer to the warm sea surface). 

Replacing GFS with MERRA-2 as input to ACSPO reduces the O–M biases and brings them 

closer to zero, in all SST bands. As shown in Table 1, the bias reduction is smallest at 3.7 µm (-

0.031K). The improvement becomes progressively larger in the more absorbing bands at 8.6, 11, 

and 12 µm (-0.088, -0.111, and -0.129 K, respectively). The RSDs are also reduced (by -0.043, -

0.124, -0.141, and -0.190 K respectively, in root-mean-square sense). Figure 2 further shows that 
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the improvements in the O–M median biases and RSDs are consistent in all bands and for all 

days during the study period, after replacing GFS with MERRA-2 data. 

To better understand the likely underlying causes of the O–M bias improvements, Figure 3a 

shows a highly linear relationship between the changes in the O–M biases (at the 3.7 µm band) 

and the difference in total precipitable water vapor (TPWV) between MERRA-2 and GFS. Note 

that for clarity, the O–M biases are binned by the water vapor difference. As expected, smaller 

column water vapor amounts in MERRA-2 result in a warmer bias, and larger water vapor 

amounts in a colder bias. Interestingly, the fit line in Fig. 3a does not go through the origin, 

suggesting that different vertical distributions of water vapor in MERRA-2 and GFS may also 

contribute to the simulated BT differences. Fig. 3b shows that the reduction in O–M biases is 

most prominent in the tropical region near the equator, where IR absorption by water vapor is 

strongest and the water vapor profile more critically affects the simulated BTs. This is consistent 

with the larger amount of TPWV in MERRA-2 at low- and mid-latitudes, as shown in Fig. 3c. 

Figure 3d further reveals that the TPWV difference is larger at the Western Hemisphere. 

However, the TPWV difference between MERRA-2 and GFS near the equator is not as strong as 

at mid-latitudes (e.g., 30oS), which implies that at the equator, the difference in water vapor 

vertical distribution may also contribute to the peak in the simulated BT difference using 

MERRA-2 vs. GFS fields. Therefore, the improvements in the O–M bias statistics are likely due 

to the fact that MERRA-2 captures the global distribution of water vapor, both geographical and 

vertical, better than NCEP GFS. Such differences are probably better seen and captured in the 

absorption bands, but our analyses suggest that they are large enough, to cause statistically 

significant improvements even in the window bands employed for SST retrieval. 

3.2. Effect of using RTTOV vs. CRTM on O–M BT biases in aerosol-free conditions 
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In ACSPO, CRTM simulations are performed over the GFS or MERRA-2 grids, and the 

simulated atmospheric radiances and transmittances are then bilinearly interpolated to VIIRS 

pixels. In contrast, the RTTOV simulations are performed directly on the sensor pixel level, 

which are performed here in a stand-alone mode (i.e., outside ACSPO framework). Table 1 

shows that in the RTTOV simulations using MERRA-2 data, the global O–M biases under 

aerosol-free conditions are significantly reduced, and become much closer to zero, especially in 

the two longwave bands, to -0.087 K at 11 µm, and -0.096 K at 12 µm. The bias also decreases at 

8.6 µm, but less dramatically, to -0.391 K. The inconsistency between the 8.6 and 11-12 µm 

bands has been noted and reported to the RTTOV developers’ team. However, as of the time of 

this writing, the possible causes of this inconsistency remain unclear. In the most transparent 3.7 

µm band, the O–M bias even turns slightly positive, leaving no room for the remaining 

unaccounted physical factors discussed above (all of which are expected to result in negative O– 

M bias). Interestingly, the RSDs are consistently larger in RTTOV simulations, possibly due to 

increased noises in pixel-level simulations. Recall that the objective of RTTOV experiments here 

was to simulate the dust effects on VIIRS BTs for the use in testing the aerosol correction on 

SST retrieval. Comparison of the relative performance of CRTM and RTTOV is not 

straightforward with the current experiments, due to the implementation differences. 

3.3. Effect of dust aerosols on the O–M BT biases 

To simulate the effect of dust on sensor BTs, the MERRA-2 aerosol profiles are first interpolated 

onto the VIIRS clear-sky pixels. Figure 4a shows a global map of MERRA-2 total column dust 

AOD (0.55 µm) on January 23, 2018. Massive dust outflow can be seen from the deserts of West 

Africa and the Middle East to the North Atlantic and Arabian Sea, respectively. A relatively 

weak dust plume is also seen over the Pacific Ocean, which may be transported from the 
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Taklimakan and Gobi Deserts of East Asia. Although Asian dust is associated with lower AODs, 

the plume is lifted to higher altitudes (i.e., above 6 km) compared to African dust, as seen from 

the map of vertical height where dust AOD reaches maximum, Hm (Fig. 4b). 

Figure 4a and 4b also show that the low dust AODs (<0.02) are associated with highly variable 

Hm, ranging from close to the surface to the upper troposphere (>8 km). The density plot in 

Figure 4c reveals that these low AOD values cover the majority (>80%) of ocean regions. In 

contrast, the large AOD pixels, mostly located at the North Atlantic, fall within much tighter 

vertical heights below 4 km. Given that no aerosol height information is currently being 

assimilated in MERRA-2, the dust vertical profile may be uncertain, especially for the low 

AODs, which could be model noises. Therefore, the dust-affected RTTOV simulation is 

performed only for the pixels with a column AOD larger than 0.02 (0.55 µm), in order to reduce 

computational cost and minimize the influence of the data noises from MERRA-2. 

The dust-induced BT changes in VIIRS IR bands are calculated as the differences between the 

dust-affected and aerosol-free RTTOV experiments. An example of the BT change in the 3.7 µm 

band is shown in Fig. 4d. The global average BT reduction due to dust is -0.07 K in this band. 

However, the BT reductions are not uniform in space, reaching -0.9 K over the North Atlantic 

and some parts of the Arabian Sea, due to the attenuation by strong dust load. In comparison, the 

BT changes are smaller over the Pacific, where Asian dust is greatly reduced after long range 

transport from inland sources (although it’s lifted to higher altitudes and therefore potentially 

may cause more cooling in the BTs). There are also small BT reductions over the Black and 

Caspian Seas, which may be affected by dust transport from the deserts of Central Asia (Xi and 

Sokolik, 2015; Xi and Sokolik, 2016). 
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Figure 5 shows the O–M biases (calculated with CRTM and MERRA-2) as a function of dust 

AOD, in the original VIIRS O–M biases, and after correcting for the dust aerosol effect 

(calculated as the difference between two RTTOV runs, with and without dust). After aerosol 

correction, the dependence is greatly reduced (i.e., smaller slopes) in all bands, suggesting a 

statistically significant skill in the MERRA-2 aerosol reanalysis to correct for dust-induced 

effects on the sensor BTs. The improvement in dependency is however not complete, with all 

bands under-corrected. This could possibly be remedied by tuning the scaling factor of MERRA-

2 visible AOD to IR AODs (a value of 0.4 is used in this study) in order to maximize the dust 

correction. The aerosol correction is also not uniform across the different bands, with the 11 µm 

band having the largest residual aerosol dependency. One possible cause might be the inaccurate 

spectral optical properties from the Mie calculations, which uses globally invariant dust 

refractive index and particle size distribution. More work is needed to better understand the 

cause of the incomplete and non-uniform aerosol correction in the top-of-atmosphere BTs. 

3.4. Effect of aerosol correction on SST 

Two SST products are currently generated in ACSPO: one using global regression (GR; 

Petrenko et al., 2014) and the other using piecewise regression (PWR; Petrenko et al., 2016) 

algorithms, respectively. The ACSPO GR SST is calculated using a single set of regression 

coefficients, trained on a global dataset of matchups, while the PWR derives different regression 

coefficients in several segments of the SST retrieval domain, which is defined by the SST 

equation regressors (Petrenko et al., 2016). The GR SST is known to be subject to significant 

regional and seasonal biases (Merchant et al., 2009), whereas the PWR SST was designed to 

empirically reduce all such regional and local biases, regardless of their physical causes (e.g., 

due to residual cloud, globally non-uniform distributions of water vapor and temperature profiles, 
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angular dependencies in SST algorithms, etc.), and thus minimize the need for bias corrections in 

their assimilation into L4 analyses such as CMC. Our visual analyses in the NOAA SST Quality 

Monitor system (SQUAM; www.star.nesdis.noaa.gov/sod/sst/squam/; Dash et al., 2010) suggest 

that the PWR SST indeed significantly reduces regional biases, including over aerosol-affected 

areas, associated with Saharan, East Asia, and Saudi Arabian dust outbreaks. In this study, we 

estimate the skill of MERRA-2 aerosol reanalysis to reduce aerosol-induced biases in the GR 

SST, and compare it with the current skill provided by the empirical PWR SST. 

Aerosol-corrected GR SST is re-computed from aerosol-corrected VIIRS BTs, using the same 

ACSPO GR equation and current operational regression coefficients. (Ideally, the regression 

coefficients should have been recalculated for “aerosol-free” BTs, to minimize the global 

satellite minus in situ biases). Therefore, some biases in the aerosol-corrected GR SST may be 

expected, but the objective is to compare the AOD dependencies in the aerosol-corrected vs. 

current non-corrected ACSPO GR SSTs, and the empirically-corrected PWR SST. The 

remaining global biases can be easily removed, if needed, by retraining the GR regression 

coefficients against the aerosol-corrected BTs. 

Figure 6 (top panel) shows that the biases of all three SST products follow near-Gaussian 

distributions. The ACSPO GR SST has a median bias of -0.008 K and RSD of 0.242 K, 

compared to the bias of 0.074 K and RSD of 0.240 K for the aerosol-corrected GR SST. Note 

that non-zero biases in both GR SSTs are expected, due to the use of the operational ACSPO 

coefficients, not specifically optimized for the simulation period. Likewise, a slight degradation 

of the bias in the aerosol-corrected SST is also possible, because the regression is not retrained 

on aerosol-free BTs. 
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In contrast, the RSD in aerosol-corrected GR SST improve by -0.03 K, in root-mean-square 

sense. As shown in Fig. 7, the RSD of aerosol-corrected SST may deteriorate on certain days 

(such as the less dusty period of 30-31 January 2018), but over the two-week period, is reduced 

compared to the non-corrected SST. This result suggests some potential skill of the MERRA-2 

aerosol reanalysis to correct the sensor BTs and SSTs. Considering the fact that all current 

aerosol analyses, including MERRA-2, are based on assimilation of AOD at visible wavelengths, 

and a lack of any direct assimilation of aerosol vertical distribution information which strongly 

affects the IR BTs and SSTs, we consider this a strong evidence of the utility of MERRA-2 

aerosol reanalysis to predict the dust effects in the SST IR bands. 

It is also interesting to compare the aerosol-corrected GR SST with the PWR SST, which has a 

bias of 0.036 K and RSD of 0.204 K, respectively. As expected, the RSD of PWR SST is 

significantly smaller than for both GR SSTs, prior to aerosol correction and after it, because the 

PWR attempts to reduce all biases in the SST product, including those caused by aerosols. 

Another informative and relevant comparison of the skill of the physical aerosol-corrected versus 

empirical PWR SSTs, is the dependencies of the corresponding global mean biases on dust AOD, 

as shown in Fig. 6b. Although the PWR significantly reduces both magnitudes of the median 

biases and their dependencies on dust AOD, the aerosol-corrected GR SST provides the least 

dependency for both first and second moments of the distributions shown in Fig. 6b and 7. This 

suggests that applying the PWR regression, on the top of the aerosol-corrected GR SST, may 

further improve the accuracy of ACSPO SST products. 

4. Conclusions 

To facilitate the NOAA ACSPO SST reprocessing from a number of sensors, we explored the 

MERRA-2 meteorological and aerosol reanalyses for improving the monitoring of global O–M 
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BT biases and SST retrieval at four IR bands (centered at 3.7, 8.6, 11 and 12 µm, respectively) of 

SNPP VIIRS. Based on two weeks’ global nighttime data (18-31 January 2018), we showed that 

the global O–M BT median biases are reduced, in all SST bands, likely due to more accurate 

water vapor (i.e., total amount and/or vertical placement) in MERRA-2, compared to the NCEP 

GFS real-time data currently used in ACSPO. The global RSDs for the O–M biases are also 

reduced, in all VIIRS SST bands. 

Furthermore, accounting for the unwanted dust signal in sensor BTs using stand-alone RTTOV 

simulations, further reduces the global O–M BT median biases, RSDs, and dependencies on dust 

AOD. Using aerosol-corrected VIIRS BTs in the ACSPO global regression equation leads to 

reduced RSD in the aerosol-corrected SST, compared to the non-corrected global regression SST. 

More importantly, the aerosol correction greatly reduces the dependence of SST bias on the dust 

AOD, and does it even more effectively than the current ACSPO piecewise regression SST. Our 

findings suggest that MERRA-2 meteorological fields are a viable alternative to NCEP GFS real-

time data for ACSPO reprocessing. Also, the MERRA-2 aerosol reanalysis demonstrates some 

potential skill for reducing dust-related BT and SST biases, but this requires more work and 

analyses, before it can be directly explored and fully implemented in the ACSPO system. 
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   M12/3.7 µm   M14/8.6 µm   M15/11 µm   M16/12 µm 

  Median  RSD  Median  RSD  Median  RSD  Median  RSD 

CRTM+GFS   -0.145  0.308  -0.714  0.458  -0.575  0.485  -0.728  0.583 

 CRTM+MERRA2  -0.114  0.305  -0.626  0.441  -0.464  0.464  -0.599  0.551 

 RTTOV+MERRA2  +0.003  0.370  -0.391  0.589  -0.087  0.626  -0.096  0.779 

  

   

440 Table  1.  Global  statistics  of  the  nighttime  O-M  BT  biases  in  SNPP  VIIRS  SST  bands  M12  and  

M14-16,  based  on  aerosol-free  simulations  for  18-31  January  2018.  441 

442 
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444 

445 Figure  1.  Global  histograms  of  nighttime  O-M  BT  biases  in  the  SNPP  VIIRS  band  M12  (3.7  µm)  

based  on  three  experiments  for  the  study  period  of  18-31  January  2018.  The  corresponding  

median  biases  and  RSDs  for  all  four  SST  bands  (M12,  and  M14-16)  are  summarized  in  Table  1.  
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448
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Figure 2. Time series of the global nighttime O-M BT median biases (top) and RSDs (bottom) in 

the four SNPP VIIRS IR SST bands based on ACSPO CRTM simulations using GFS (triangles; 

broken lines) and MERRA-2 (squares; solid lines) profiles. Each symbol represents daily global 

statistics and the horizontal lines represent averages over the study period. 
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460

Figure 3. ACSPO/CRTM simulated BT difference in the SNPP VIIRS band M12 (3.7 µm) using 

MERRA-2 versus GFS meteorological profiles, as a function of the difference in column total 

precipitable water vapor (TPWV) between MERRA-2 and GFS (a); Same as (a), but as a 

function of latitude (b); The TPWV difference between MERRA-2 and GFS as a function of 

latitude (c) and longitude (d). All results are derived from the study period of 18-31 January 

2018. 
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463 

464 Figure  4.  MERRA-2  total  column  dust  AOD a t  0.55  µm  on  23  January  2018  (a);  Vertical  height  

(Hm)  associated  with  the  maximum  dust  AOD ( b);  Density  plot  of  dust  AOD a nd  Hm  (c);  

RTTOV s imulated  increments  in  the  nighttime  BT  due  to  dust  in  the  3.7  µm  band  (d).  
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467 

468 Figure  5.  ACSPO O –M  BT  biases  as  a  function  of  dust  AOD f or  global  nighttime  SNPP  VIIRS  

data  from  18-31  January  2018,  based  on  CRTM  simulations  using  MERRA-2  profiles,  without  

(blue)  and  with  (red)  dust  aerosol  correction.  
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471 

472 Figure  6.  Global  histograms  of  ACSPO S ST  biases  with  respect  to  the  CMC  L4  (top);  Changes  

in  the  SST  median  biases  as  a  function  of  dust  AOD ( bottom).  Three  SST  products  are  

considered:  ACSPO g lobal  regression  SST  (GR  SST),  GR  SST  derived  from  aerosol-corrected  
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475 VIIRS  BTs,  and  ACSPO  piecewise  regression  SST  (PWR  SST),  all  based  on  global  nighttime  

data  of  SNPP  VIIRS  from  18-31  January  2018.  476 

477 

478 Figure  7.  Time  series  of  the  RSDs  of  three  SST  products  shown  in  Figure  6.  
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